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1. Introduction

The search for Physics beyond the Standard Model (SM) within the framework of effective

field theories addresses in particular the role of higher dimensional operators and their

possible experimental footprints. In effective field theories and in models compactified to

4D these operators are a common presence. A special class of operators is that of higher

derivative operators, whose role has not been investigated in great detail. In this work

both classes of higher dimensional operators (derivative or otherwise) are included. One

motivation for considering the study of such operators is that they can be generated at low

energy (below some scale) by renormalisable new physics at this scale, after integrating out

massive degrees of freedom. Such operators are also generated dynamically by radiative

corrections even in the simplest orbifold compactifications, see for example [1 – 5]. Such

operators can be generated by either bulk or brane-localised interactions, when integrating
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out the loop corrections of modes associated with the compactification. For example they

are generated by one-loop gauge interactions in 6D compactifications [1, 3 – 5] and by

one-loop localised superpotential interactions in 5D or 6D orbifolds [2]. These operators

respect all the symmetries of the models considered and their generation as counterterms

by quantum effects prompted, in part, the present analysis.

In the context of effective field theories higher dimensional derivative operators were in-

vestigated in the past; they were studied in the framework of Randall-Sundrum models [6],

have implications for cosmology [7 – 9], phase transitions and Higgs models [10 – 13], super-

gravity/higher derivative gravity [14]–[24], string theory [25, 26], cosmological constant [27],

implications for the UV regime [28], for instabilities [29], and model building [30]–[33]. Ap-

plications of theories with such operators also included their role in regularisation methods

debated in [34 – 37]. Interacting theories with higher derivatives involve the presence of

ghosts which can bring in difficult issues (for example unitarity violation), some of which

were studied in [38, 39]. Such issues are actually common, since the presence of ghosts is

also familiar in standard Pauli-Villars regularisation method of 4D theories (see [40] and ref-

erences therein). Provided that the scale of the higher derivative operators is high-enough

the associated effects are suppressed at low energies. In theories with higher derivative op-

erators the vacuum-to-vacuum amplitude is well-defined (no exponential growth) provided

that the ghost fields are not asymptotic states [41] (i.e. are present as loop states only).

In this case the vacuum-to-vacuum amplitude (and therefore Green functions) tends to

that of second order theory in the decoupling limit of a very high scale of these operators.

One looses unitarity near this high scale, but can never produce a negative-norm state or

negative probability [41].

The purpose of this work is to study the case of generic 4D N=1 supersymmetric mod-

els with higher derivative terms in either its Kahler part or in the superpotential, for an

otherwise arbitrary superpotential and field content. Using a supersymmetric formulation

it is shown that such models are in fact equivalent to a second order theory with renor-

malised interactions and additional (ghost) superfields manifestly present in the action.

The couplings of the new, second order theory, acquire dynamically, at the tree level, a

dependence on the scale of the higher dimensional operators, via wavefunction rescaling.

For specific assumptions for the analytical continuation of the theory from Minkowski to

Euclidean metric and in the absence of additional higher dimensional non-derivative oper-

ators, we argue that the new theory can be renormalisable for the case of higher derivative

terms considered.

Supersymmetry breaking is also considered and in this higher derivative operators can

play an interesting role. It is showed that apparently un-interesting models with higher

derivative terms, without interactions and with trivial supersymmetry breaking in the de-

coupling limit of the higher derivative terms, are in fact interacting in the new, second order

formulation, and also have spontaneous supersymmetry breaking à la O’Raifeartaigh [42].

Independent of the exact nature of the ghost (super)fields mentioned earlier (loop only

or asymptotic states) the method we develop enables us to estimate perturbatively the

effects of high-scale physics due to higher derivative operators on low energy observables.

The presence of ghost superfields leads to a scalar potential which is not necessarily posi-
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tive definite and one could in principle have a positive, negative or even vanishing scalar

potential for broken supersymmetry. The last case can be relevant for the cosmological

constant problem [43].

We would like to emphasize one point, briefly mentioned in the first paragraph, which

we consider extremely important regarding the origin of the higher dimensional operators

(derivative or otherwise). Consider a 4D renormalisable theory with a massive superfield

χ, of mass M∗ ≫ m, with

L1 =

∫

d4θ
[

Φ†Φ + χ†χ
]

+

{
∫

d2θ

[

M∗

2
χ2 +mΦχ+ W(Φ)

]

+ h.c.

}

(1.1)

After solving the eq of motion for χ, one immediately finds

χ =
1

M∗

[

−mΦ − m

4M∗
D

2
Φ† +

1

16

−m
M2

∗

D
2
D2Φ − m

64M3
∗

D
2
D2D

2
Φ† + · · ·

]

(1.2)

which if plugged back into the Lagrangian brings about terms of the form

L1 ⊃
∫

d4θ

{

m2

8M3
∗

[

ΦD2 Φ + h.c.
]

+
m2

16M4
∗

(D
2
Φ†) (D2Φ) + · · ·

}

(1.3)

Therefore, integrating out massive (super)fields generated higher derivative operators in

the low energy effective action valid below the scale M∗. Since the original theory was

free of ghosts, the same remains true about the low energy action as long as one considers

the whole series of higher dimensional operators in (1.3). However, in an effective theory

study and for practical purposes, one is often restricting the analysis to a finite set of higher

dimensional operators, of lowest order in 1/M∗. The consequence of this is the presence of

ghosts in the action, as a sign that the theory is incomplete in the UV (i.e. physics above

M∗). From an effective field theory point of view, as we adopt in this paper, the absence

of a UV completion is assumed anyway, therefore we are not addressing, in our discussion

below, the more conceptual problems that ghosts can eventually bring. Our goal is to

show however, how one can investigate effective theories with higher derivative operators

in difficult cases such as when the original, high energy action is unknown. For a discussion

of related issues see [44].

The plan of the paper is as follows. Section 2 introduces the lowest-order higher

derivative terms in superfield language. In section 3 we consider a 4D N=1 model with

higher derivative kinetic term and show its equivalence to a second order theory. The

analysis is done firstly for a specific superpotential, to set out our method of “unfolding”

the fourth order theory into an equivalent, second order one. This is then generalised to

an arbitrary superpotential (without derivative terms). In section 4 we discuss the case

of higher derivative terms in the superpotential which is otherwise arbitrary, and perform

a similar analysis, to find the equivalent second order theory. The case of spontaneous

supersymmetry breaking and the form of soft terms is briefly discussed in section 5. In

section 6 we discuss briefly an application to MSSM with higher derivative operators and

show that the lightest Higgs mass acquires corrections of order 2µ/M∗, which are sizable

for mass scales M∗ suppressing the operator in the 10 TeV range and that can raise the

Higgs mass above the current experimental bounds. We end with the conclusions and a

short appendix.

– 3 –
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2. Higher dimensional operators: general considerations

The framework of our analysis is that of 4D N=1 supersymmetric models. In such models,

one can commonly have higher dimensional operators, which can involve higher derivatives

or not. Let us consider the last case. Despite rendering a model non-renormalisable,

such operators are important for phenomenology. Our analysis in this paper is valid in

the presence of such operators in the superpotential and does not make explicit reference

to them. If such operators are present in the Kahler term, they again do not affect the

analysis below. This is because our analysis will only involve transformations (change of

“basis”) of fields having higher (super)derivatives and of their derivatives, to a new basis of

superfields where such derivatives are absent. Since we will provide the relations between

the two bases of fields, old and new, the higher dimensional operators referred to earlier,

if they involve a field which1 underwent such a transformation, will immediately be known

in the new, equivalent basis. This will become clearer in the next sections. Briefly, higher

dimensional operators are spectators under the transformations we consider, allowing our

analysis to be general.

Let us now consider, in the 4D N=1 supersymmetric context, the possible operators

involving (super)derivatives, to the lowest orders. Such operators are less studied in the

literature. They can be constructed using combinations of powers of D2,D
2

and of the

superfields denoted Φj. For the lowest powers of D, D, these are (integrated appropriately

over Grassmann space):

(a)

∫

d2θΦi (D
2
Φ†

j) + h.c., (b)

∫

d4θ [Φi (D
2Φj) + h.c.] ∼

∫

d2θΦi � Φj + h.c

(c)

∫

d4θΦ†
i D

2
D2 Φj ∼

∫

d4θΦ†
i � Φj, (d)

∫

d4θΦ†
i ΦjD

2Φk (2.1)

(a) is just
∫

d4θ(Φ†
iΦj + h.c.), (b) has dimension 5, (c) and (d) have dimension 6; (b) is

studied in section 4; (c) is studied in section 3 while (d) can be treated in a similar way,

see section 5. Further, one could also consider

(e)

∫

d2θΦn (D
2
Φ†

j)
p + h.c., (2.2)

of dimension 2p + n + 1. This generalises (a) and can also be treated following the same

method as in section 4 and for n + p ≤ 3 can actually be renormalisable. In fact (b), (c),

(d), can also be renormalisable (see section 5.4) despite having dimension 5, 6, 6 respec-

tively. The renormalisability will be seen once we write a theory with such operators as an

equivalent, second order theory involving only dimension 4 operators. The renormalisable

character of the new, equivalent theory, adds support to their study and partly motivated

their analysis.

1having a (super)derivative
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3. Effects of higher derivative kinetic terms

3.1 The Wess-Zumino model with higher derivative terms

We start with the Wess-Zumino Lagrangian with a higher derivative term, with Φ ≡
(φ,ψ, F ):

L =

∫

d4θΦ†
(

1 + ξ�

)

Φ +

{
∫

d2θ

[

1

2
mΦ2 +

1

3
λΦ3

]

+ c.c.

}

= F ∗
(

1 + ξ�
)

F − φ∗�
(

1 + ξ�
)

φ+ i∂µψ̄ σ̄
µ
(

1 + ξ�
)

ψ

+

(

1

2
m

(

2φF − ψψ
)

+ λ
(

φ2 F − φψ2
)

+ c.c.

)

(3.1)

where ξ ≡ 1/M2
∗ , with M∗ the scale where the higher dimensional operator becomes rele-

vant. We assume that M2
∗ is significantly larger than all other scales in the theory (like m2

or vev’s of the fields). Due to the presence of the term proportional to ξ, the auxiliary field

F is now dynamical.2 The spectrum of scalar states is found from the poles of the propaga-

tors 〈φφ∗〉, 〈F F ∗〉. From these, one finds the masses as the roots of � (1+ξ�)2 +m2 = 0,

given by

m2
1 = m2

[

1 + 2 ξ m2 + 7 (ξ m2)2 + O
(

(ξ m2)5/2
)]

m2
2,3 = m2

[

1

ξ m2
± 1

√

ξ m2
− 1

2
± 5

√

ξ m2

8
− ξ m2 + O

(

(ξ m2)3/2
)

]

(3.2)

The last two masses correspond to two ghost states associated with F and �φ, see their

negative kinetic terms. These values will be needed in the next section. For later reference,

the scalar potential in the limit ξ = 0 is: V (φ) = |mφ + λφ2|2 which has two super-

symmetric ground states V = 0, 〈F 〉 = 0 situated at 〈φ〉 = 〈φ∗〉 = 0 and 〈φ〉 = −m/λ,

〈φ∗〉 = −m/λ∗. The mass matrix in the basis (φ, φ∗) has eigenvalues m2
1,2 = m2. A saddle

point is located at φ = −m/(2λ), φ∗ = −m/(2λ∗), where m2
1,2 = ±m2/2. One can use

the above Lagrangian for calculations, including loop effects in the presence of the higher

derivative operator [28]. However, it would be preferable to have a better understanding

of the role of such operator and, if possible, a formulation of such models as a second order

theory. This could prove very helpful for applications.

3.2 The higher derivative Wess-Zumino model as a second order theory

In this section we show in a manifest supersymmetric way that a Wess-Zumino model with

a higher derivative term is equivalent to a second order theory with new superfields and

renormalised interactions. The results are then generalised to an arbitrary superpotential.

2By supersymmetry, this will require, in a second order formulation of this theory to be found in the

following, the introduction of an additional superfield, see later

– 5 –



J
H
E
P
0
3
(
2
0
0
8
)
0
4
5

One has (here3 s1 ≡ ±1)

L =

∫

d4θΦ†
(

1 + s1 ξ�

)

Φ +

{
∫

d2θ

[

m

2
Φ2 +

λ

3
Φ3

]

+ h.c.

}

=

∫

d4θ
[

Φ†Φ − s1 ξ

16
D2ΦD

2
Φ†

]

+

{
∫

d2θ

[

m

2
Φ2 +

λ

3
Φ3

]

+ h.c.

}

(3.3)

Introduce

Φ = a1 Φ1 + a2 Φ2

ΦD ≡ m−1D
2
Φ† = b1 Φ1 + b2 Φ2, (3.4)

where we used that ΦD ≡ (φD, ψD, FD) is itself a chiral superfield. The 2 × 2 matrix

of coefficients a1,2, b1,2 must be unitary, to maintain the eigenvalue problem. A useful

parametrisation for the unitary matrix is a1 = cos θ exp(i h1), a2 = sin θ exp(−i(h − h1)),

b1 = − sin θ exp(i (h − h1)), b2 = cos θ exp(−i h1) where θ, h, h1 are real. In principle one

could work with a simplified assumption (a1 = b2 = 1, a2 = b1 = 0) since the difference is

a rotation in the superfield space. For generality we keep the matrix entries in the above

non-trivial parametrization, to show explicitly that the final results are independent of a

such particular choice.4 eq. (3.4) gives a constraint

m−1

[

a∗1D
2
Φ†

1 + a∗2D
2
Φ†

2

]

= b1 Φ1 + b2 Φ2 (3.5)

To account for this, we must introduce an additional contribution ∆L to the Lagrangian,

where the Lagrange multiplier is a new chiral superfield Φ3 (therefore DΦ3 = 0). We then

have5

∆L =

∫

d2θ
[

m−1 (a∗1D
2
Φ†

1 + a∗2D
2
Φ†

2) − (b1 Φ1 + b2 Φ2)
]

Φ3m∗ + h.c., m∗ ≡
√
ξ m2

4

(3.6)

Above m∗ was introduced for dimensional reasons; since the constraint should be removed

in the absence of the higher derivative term (ξ → 0) in the original action, m∗ should be

proportional to ξ; further, each of the D2Φ or D
2
Φ† derivatives comes with a

√
ξ/4, see

eq. (3.3), and with these observations one then obtains the above expression for m∗. With

L′ = L + ∆L, then

L′ =

∫

d4θ
[

ρ1 Φ†
1Φ1 +

(

ρ2 Φ†
1Φ2 + ρ∗2Φ

†
2Φ1

)

+
(

ρ3 Φ†
1 Φ3 + ρ4 Φ†

2 Φ3 + h.c.
)

+ ρ5 Φ†
2Φ2

]

+

{
∫

d2θ

[

m

2

(

a1Φ1+a2Φ2

)2
+
λ

3

(

a1Φ1+a2Φ2

)3−m∗Φ3

(

b1Φ1+b2Φ2

)

]

+ h.c.

}

(3.7)

3Only s1 = +1 gives a bounded Euclidean action, but we keep s1 only to trace its effects in formulae

below.
4For an easier, more transparent first reading one could set in the following a1 = b2 = 1, a2 = b1 = 0.
5Without any restriction of generality, we used the scale m in eq. (3.4), (3.5), introduced for dimensional

reasons. In principle one can use there any other finite, non-zero mass scale of the theory, mq. However, our

use of m instead of mq only amounts to a simple re-definition, always allowed (and assumed to have been

made), of our original parameter ξ → ξ m2

q/m
2, as it can easily be seen from inserting (3.4) in eq. (3.3).

– 6 –
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where

ρ1 = |a1|2 −
s1
16

|b1|2 ξ m2, ρ2 = a∗1 a2 −
s1
16
b∗1 b2 ξ m

2,

ρ3 = −4
m∗

m
a∗1, ρ4 = −4

m∗

m
a∗2, ρ5 = |a2|2 −

s1
16

|b2|2 ξ m2 (3.8)

We therefore “traded” the higher derivative term in the original action, for an additional

superfield Φ2 plus a constraint, which generated in turn the presence of Φ3. After using

the eq of motion (in terms of superfields) for Φ3 ≡ (φ3, ψ3, F3) one immediately finds6,7

(after using the definition of ρ3,4) that

m∗

{

m−1
[

a∗1D
2
Φ†

1 + a∗2D
2
Φ†

2

]

−
[

b1 Φ1 + b2 Φ2

]

}

= 0. (3.10)

For m∗ 6= 0, this immediately recovers the initial constraint (3.5), while if m∗ ∝
√
ξ → 0

the constraint ∆L of (3.6) is vanishing, as it should be the case since in this case there is

no higher derivative term in (3.3).

Also, from eq. (3.7) one can integrate out Φ2, Φ3 by using the their equation of motion,

to recover the original lagrangian (3.3). To see this easily one uses their eqs of motion in

superfield form and that: −4
∫

d4x d4θ f(x, θ, θ) =
∫

d4x d2θD
2
f(x, θ, θ) and D

2
D2 =

−16�.

We diagonalise the hermitian matrix M of the coefficients of D terms in (3.7), in the

basis8 (Φ1,Φ2,Φ3). Its eigenvalues ν1,2,3 are real, given by the roots of

ν3 + ν2 c3 + ν c2 + c1 = 0; (3.11)

where

c3 = − 1

16

[

16
(

|a1|2 + |a2|2
)

− s1

(

|b1|2 + |b2|2
)

ξ m2
]

;

c2 = − 1

16

[

256
m2

∗

m2

(

|a1|2 + |a2|2
)

+ s1 |a2b1 − a1b2|2 ξ m2
]

c1 = −s1
m2

∗

m2
|a2 b1 − a1 b2|2 (ξ m2) (3.12)

These expressions show explicitly the invariance of ci under unitary redefinitions of the

2 × 2 matrix of coefficients ai,bi, and this is a good consistency check. If s1 > 0, there is

one positive root and two negative. If s1<0 we end up with two positive and one negative

roots. For a unitary transformation in (3.4), the roots are

ν1,2 =
1

2

[

1 ±
√

1 + 64m2
∗/m

2
]

, with ν1 > 0; ν3 = − 1

16
s1m

2 ξ; (3.13)

6with −4
R

d4xd4θ f(x, θ, θ) =
R

d4x d2θ D
2

f(x, θ, θ), f arbitrary.
7For later use let us mention that in our conventions

D
2

Φ† ≡
`

− 4F ∗; −4i ∂/ψ; 4 �φ∗
´

, Φ ≡ (φ, ψ, F ) (3.9)

8M has: M11 =ρ1,M12 =ρ2,M13 =ρ3,M21 =ρ∗2,M22 =ρ5,M23 =ρ4,M31 =ρ∗3,M32 =ρ∗4,M33 =0

– 7 –
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where as usual m∗ =
√
ξ m2/4. We keep m∗ manifest in our equations in order to trace

the effects of the initial constraint, eqs. (3.5) and (3.6). The Lagrangian becomes:

L′ =

∫

d4θ

[

ν1 Φ
′†
1 Φ

′

1 + ν2 Φ
′†
2 Φ

′

2 + ν3 Φ
′†
3 Φ

′

3

]

+

{
∫

d2θ

[

1

2
mkp Φ′

k Φ′
p +

1

3
λkpl Φ

′
k Φ′

p Φ′
l

]

+ h.c.

}

(3.14)

where Φ′
i = vij Φj, i, j = 1, 2, 3, and diag(ν1, ν2, ν3) = vM v† with vij unitary. Also

mkp = m
(

a1 v
∗
k1 + a2 v

∗
k2

)(

a1 v
∗
p1 + a2 v

∗
p2

)

− m∗

(

v∗k3(b1 v
∗
p1 + b2 v

∗
p2) + (k ↔ p)

)

λkpl = λ
(

a1 v
∗
k1 + a2 v

∗
k2

)(

a1 v
∗
p1 + a2 v

∗
p2

)(

a1 v
∗
l1 + a2 v

∗
l2

)

(3.15)

which are symmetric under the permutation of their indices. We rescale Φ̃′
i

Φ′
i = Φ̃i/

√

|νi|, i = 1, 2, 3. (3.16)

to find:

L′ =

∫

d4θ

[

σν1
Φ̃†

1Φ̃1 + σν2
Φ̃†

2Φ̃2 + σν3
Φ̃†

3Φ̃3

]

+

{
∫

d2θ

[

1

2
m̃kp Φ̃k Φ̃p +

1

3
λ̃kpl Φ̃k Φ̃p Φ̃l

]

+ h.c.

}

, (3.17)

where

σνk
=

νk

| νk |
, m̃kp =

mkp
√

|νk νp |
, λ̃kpl =

λkpl
√

|νk νp νl|
, k, p, l = 1, 2, 3. (3.18)

Therefore σν1
= 1, σν2

= −1, σν3
= −s1 and as a result Φ̃1 is a particle-like field, Φ̃2 and

Φ̃3 (for s1 = 1) are ghost-like superfields given their negative kinetic terms. The presence

of such superfields is common in supersymmetric theories with constraints [45].

The result in eq. (3.17) shows that we “unfolded” in a manifest supersymmetric way

the original, higher derivative supersymmetric Lagrangian L eqs. (3.3) into an equivalent,

second order Lagrangian. As a result, while in the initial (3.3) the auxiliary field F was

dynamical, all new F̃i in L′ are not and can be integrated out as usual. To understand this

change, recall from (3.9) the components of ΦD ≡ (φD, ψD, FD)∼ (−4F ∗; −4i ∂/ψ; 4�φ∗);

further, original (Φ,ΦD) were traded for (Φ1,Φ2) → (Φ̃1, Φ̃2); using these components of

ΦD we see then that Φ̃†
2Φ̃2 in (3.17) accounts for the kinetic term of original F and for the

higher derivative terms for original ψ, φ in (3.3). However, since each of the components

of ΦD were not independent of those of Φ, a constraint had to account for this, which was

“traded” for a new chiral superfield Φ̃3. In this case Φ̃3 is dynamical, but we shall see in
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section 4 that this is not always the case.9 Further

σνj
F̃ ∗

j = −
[

m̃kj φ̃k + λ̃kpj φ̃k φ̃p

]

, j = 1, 2, 3. (3.19)

The scalar potential of the “unfolded” theory is:10

V = σνj
|F̃j |2 = σνj

|m̃kj φ̃k + λ̃kpj φ̃k φ̃p |2 k, p, j = 1, 2, 3. (3.20)

Therefore the scalar potential V is not positive definite in the second order theory; it has

contributions which are negative due to ghost superfields.

3.3 The mass spectrum

Let us investigate the mass spectrum. One obtains for the trilinear couplings (3.15)

λ̃111 = λ̃221 = −λ̃112 = −λ̃222 = − λ

η3/4
, λ̃ij3 = 0, i, j = 1, 2, 3, (3.21)

symmetric under a permutation of their indices; also

η ≡ 1 + 64m2
∗/m

2 (3.22)

For the bilinear couplings

m̃11 = m̃22 = −m̃12 =
m√
η
, m̃33 = 0

m̃13 =
1 −√

η

2
√
ξ η1/4

, m̃23 = − 1 +
√
η

2
√
ξ η1/4

, (3.23)

Note that11 m23 ∼ −1/
√
ξ while the rest are finite when ξ → 0 (recalling that m∗ =

m2
√
ξ/4). With the above relations, the Lagrangian simplifies into

L′ =

∫

d4θ

[

Φ̃†
1Φ̃1 − Φ̃†

2Φ̃2 − s1Φ̃
†
3Φ̃3

]

(3.24)

+

{
∫

d2θ

[

(m̃13 Φ̃1 + m̃23 Φ̃2) Φ̃3 +
m̃11

2
(Φ̃1 − Φ̃2)

2 +
λ̃111

3
(Φ̃1 − Φ̃2)

3

]

+ h.c.

}

,

which shows that Φ̃3 has no trilinear interaction.

The tree-level couplings (m̃ij and λ̃ijk) of the new theory have acquired a scale (moduli)

dependence. Here we refer to their dependence on ξ which is explicit in eqs. (3.23) and

9It is perhaps useful to mention here the non-susy situation, discussed long ago in [41]. In this case

taking L = −1/2φ(� + ξ�2)φ, and after introducing the lagrangian multiplier λ one finds L′ = −1/2φρ−
1/2 ξ ρ2 + λ(�φ − ρ) thus the field ρ is not dynamical and can be integrated out (alternatively one can

factorise the “�” dependence in L to end up with two dynamical fields [41]). Therefore only two fields are

present in the end, φ and λ. This is different from the supersymmetric case in the text where original F

was dynamical, which by supersymmetry required the introduction of an additional (third) (super)field in

the second order formulation.
10Sums over repeating indices are understood.
11For m13 and m23 one also obtains an overall phase factor exp(−i h1) sign(sec θ) multiplying the values

shown in (3.23), and which was not written there since it can be absorbed into a redefinition of Φ̃3, see (3.24).
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to that induced via m∗ ∼
√
ξ, where m∗ is the parameter controlling the presence of the

constraint ∆L, eqs. (3.6), (3.22). Therefore the constraint itself introduced dynamically

a scale dependence of the couplings. This dependence is ultimately due to the higher

derivative operators (3.3) whose initial presence in the Lagrangian was “traded” for a

threshold correction to the couplings of the Lagrangian of the second order theory.

The relation of initial fields Φ, ΦD to the new basis is, for the unitary transforma-

tion (3.4)

Φ =
1

η1/4
(Φ̃2 − Φ̃1), ΦD =

4

m
√
ξ

Φ̃3 (3.25)

This shows that the original superfield Φ has actually a “ghost-like” component (Φ̃2); note

that the overall factor η depends on the scale of the higher derivative operator.

From (3.24) one finds the scalar potential:

V =
∣

∣F̃1

∣

∣

2 −
∣

∣F̃2

∣

∣

2 − s1
∣

∣F̃3

∣

∣

2

=
(

m̃2
13 − m̃2

23

)
∣

∣ φ̃3

∣

∣

2
+

(

m̃13 + m̃23

)

{

[

φ̃∗3
(

m̃11 φ̃− + λ̃111 φ̃
2
−

)]

+ c.c.
}

−s1
∣

∣ m̃13 φ̃1 + m̃23 φ̃2

∣

∣

2
(3.26)

The quartic interaction is not present anymore in the potential of the “unfolded” La-

grangian, which only contains bilinear and cubic terms. Tree-level quartic interactions are

nevertheless generated in the low energy limit by exchange of φ̃3. This form of the potential

seems unstable due to cubic terms present and would suggest that such stability be only

addressed locally (i.e. we demand that ξ φ̃2
i ≪ 1) and other higher dimensional operators

of similar order could affect the Lagrangian at large φ̃i. In fact, the discussion of stability

in ghost directions is rather subtle as we shall see later, due to the fact that these fields

have negative kinetic terms. We return to clarify this shortly. The vanishing of the first

derivatives wrt φ̃∗1,2,3 respectively, gives

〈φ̃3〉 =
−1

m̃13 − m̃23

[

m̃11 + λ̃111

(

〈φ̃1〉 − 〈φ̃2〉
)

]

(

〈φ̃1〉 − 〈φ̃2〉
)

(3.27)

m̃13 〈φ̃1〉 + m̃23 〈φ̃2〉 = 0, and (3.28)

i)〈φ̃1〉 − 〈φ̃2〉 = 0, or ii) 〈φ̃1〉 − 〈φ̃2〉 = − m̃11

λ̃111

, or iii) 〈φ̃1〉 − 〈φ̃2〉 = − m̃11

2λ̃111

(3.29)

These cases are discussed below. In case i) we have, using (3.27), (3.28):

〈F̃1,2,3〉 = 0, 〈φ̃1,2,3〉 = 0, V∗ = 0 (3.30)

where V∗ denotes the value of the scalar potential at this extremum point. One computes

the eigenvalues of the mass matrix of second derivatives of the scalar potential V , which is

expanded about this vacuum solution, in the basis (φ̃i, φ̃
∗
i ), i = 1, 2, 3. At this extremum

point one finds (for s1 = +1)

m2
˜̃
φ1

= m2
[

1 − 7 (ξ m2)2 + O
(

(ξ m2)5/2
)]

m2
˜̃φ2,3

= m2
[

− 1

ξ m2
∓ 1√

ξm
− 1

2
± 19

√
ξ m

8
+ O(ξ m2)

]

(3.31)
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where either the upper or lower signs are to be considered, for φ̃2,3 respectively. The first

eigenvalue should correspond to our original φ in (3.1), (3.3) of mass m, for the same

supersymmetric state. There are also two negative mass eigenstates corresponding to the

two ghost superfields present in the “unfolded” Lagrangian of second order. Their negative

signs are expected since the kinetic and mass terms of ghost superfields come with opposite

sign in the action and thus do not necessarily suggest an instability of the potential in the

vicinity of this vacuum. There is however a problem. The above spectrum is different

from that in (3.2) of the original Lagrangian (3.1), although the latter is equivalent to that

in (3.24) if the two formulations are indeed equivalent, as showed. What is, then, the origin

of this discrepancy?

To understand this, note that - unlike above - one should compute the mass eigenvalues

from the potential with a metric which takes account of the different sign of the ghosts’

kinetic terms. For this one goes to the basis φi = (ai + ibi)/
√

2, φ∗i = (ai − ibi)/
√

2

where ai, bi (i = 1, 2, 3) are real components, then rescale ai, bi for i = 2, 3, into ai → i ai,

bi → i bi, (a1, b1 fixed). This rescaling ensures positive definite kinetic terms for the ghost

terms. In the basis (a1, b1, ia2, ib2, ia3, ib3) any negative eigenvalue of the mass matrix will

signal a local instability. In this new basis the matrix of second derivatives of the potential

has eigenvalues controlled by the characteristic equation

� (1 + ξ�)2 +m2 = 0 (3.32)

which is identical to that discussed in the text after eq. (3.1). Therefore, the spectrum of

the original Lagrangian (3.1), (3.3) of the theory with higher derivative operators is indeed

identical to that of the second order theory, computed after an appropriate rescaling of

their real components, to account for their initial negative kinetic terms. This is a good

check of the equivalence of the two formulations of the theory, eqs. (3.1) and (3.24), and

of the introduction of the additional constraint superfield in (3.6). It also shows explicitly

the requirement for using a different field-space metric when computing the spectrum in a

second order theory with ghost fields. These observations fix the problem mentioned above

and invalidate (3.31). The correct spectrum is then

m2
˜̃φ1

= m2
[

1 + 2 ξ m2 + 7 (ξ m2)2 + O
(

(ξ m2)5/2
)]

m2
˜̃φ2,3

= m2

[

1

ξ m2
± 1

√

ξ m2
− 1

2
± 5

√

ξ m2

8
− ξ m2 + O

(

(ξ m2)3/2
)

]

(3.33)

in agreement with (3.2). In the basis of rescaled component fields of positive definite kinetic

terms all mass eigenvalues are positive and this vacuum is therefore stable.

In case ii), using (3.27), (3.28):

〈F̃1,2,3〉 = 0, 〈φ̃1〉 =
m (1 +

√
η)

2η1/4λ
, 〈φ̃2〉 =

m (1 −√
η)

2η1/4λ
, 〈φ̃3〉 = 0, V∗ = 0 (3.34)

with the vev of φ̃2 going to 0 if ξ m2 → 0. In this case the eigenvalues of the matrix of

second derivatives of the scalar potential are identical to those of case i), eq. (3.33). The
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same situation as in i) applies regarding the stability. Supersymmetry is unbroken in both

i) and ii), and in the limit ξ → 0 one recovers from i), ii) the two supersymmetric ground

states of the Wess-Zumino models without higher dimensional operators.

Finally, consider case iii) together with (3.27), (3.28). One obtains

〈F̃ ∗
1 〉 = −m

2(1 +
√
η)

8λη1/4
, 〈F̃ ∗

2 〉 = −m
2(1 −√

η)

8λη1/4
, 〈F̃3〉 = 0 (3.35)

and

〈φ̃1〉 =
m (1 +

√
η)

4η1/4λ
, 〈φ̃2〉 =

m (1 −√
η)

4η1/4λ
, 〈φ̃3〉 = −m

2
√
ξ

4λ
, V∗ =

m4

16λ2
(3.36)

The vev’s of φ̃2,3 vanish when ξ m2 → 0. In terms of the component fields of the original

Lagrangian (3.3), the values (3.35) correspond to F = m2/4λ. Therefore, as expected

V∗ = F 2; this is a check of above results since the value of the potential at an extremum

point does not depend on the dynamical nature of the original F. These relations are

easily seen to be consistent with the relation between Φ̃D, Φ̃ and new Φ̃i see (3.25) (and

also (3.4), (3.9)).

Next we compute the matrix of second derivatives of V and its eigenvalues at this

extremum point. As discussed, we use a diagonalisation method which takes into account

the negative signature of the kinetic terms of the two ghosts fields. We find

m2
˜̃φ1

=
−m2

1 +
√

1 + 2ξ m2
m2

˜̃φ2

=
m2

1 +
√

1 − 2 ξ m2

m2
˜̃φ3

=
m2

−1 +
√

1 + 2 ξ m2
, m2

˜̃φ4

=
m2

1 −
√

1 − 2 ξ m2
, m2

˜̃φ5,6

=
1

ξ
(3.37)

The values m2
˜̃
φ3,4,5,6

are now all positive, and do not suggest a local instability. The signs

of m2
˜̃
φ1,2

≈ ∓m2/2 are independent of the rescaling of the ghosts real component fields.

Finally, m2
˜̃φ1,2

are counterparts to those at the saddle point of V in the absence of the higher

derivative term, given by ±m2/2, for same corresponding vev of φ̃1,2 and φ respectively

(see section 3.1). Due to non-zero vev’s of the auxiliary fields, supersymmetry is in this

case broken, similarly to Wess-Zumino model without higher dimensional operators. This

ends our discussion on the spectrum obtained from the second order Lagrangian.

There remains the question of the relation between the potential V in (3.26) and that

of the original theory (3.3) and how the latter is recovered from the former in the limit12

ξ → 0. To this purpose, evaluate V of (3.26) for extremum vev’s given in eqs. (3.27), (3.28)

but not in (3.29). The value obtained is

V ′
∗ =

√
η

∣

∣

∣
λ̃111 〈φ̃−〉2 + m̃11 〈φ̃−〉

∣

∣

∣

2
=

∣

∣

∣
λ η−

1

2 〈φ̃−〉2 −m η−
1

4 〈φ̃−〉
∣

∣

∣

2
(3.38)

12Eq. (3.16) is singular if ξ → 0, ν2,3 → 0; in (3.26) m2

13 −m2

23 = −1/ξ, m13 +m23 ∼ −1/
√
ξ are singular

too.

– 12 –



J
H
E
P
0
3
(
2
0
0
8
)
0
4
5

with φ̃− ≡ φ̃1 − φ̃2. V
′
∗ is thus the value of V evaluated at extremum vev’s in directions

other than φ̃1 − φ̃2. One observes that the extremum condition on V ′
∗ with respect to

“variable” 〈φ̃−〉 ≡ 〈φ̃1 − φ̃2〉 recovers the remaining condition eq. (3.29) of those in (3.27)

to (3.29). On V ′
∗ the limit ξ → 0 is well defined and finite. Recalling the scalar potential

of the original theory

V =
∣

∣

∣
λφ2 +mφ

∣

∣

∣

2
, and φ = − 1

η1/4
(φ̃1 − φ̃2) (3.39)

one recovers eqs. (3.38). To conclude, the scalar potential in the original theory (3.3) is a

“projection” of a more general potential which includes the extra (ghost) degrees of freedom

introduced by the higher derivative term in the action, evaluated for extremum vev’s of

two linear combinations of all degrees of freedom. That is, there is no clear separation in

the potential between particle and ghost directions. This is not too surprising if we recall

eq. (3.25) showing the original Φ had itself a ghost “piece”.

3.4 The case of a general superpotential

We extend the results of the previous section to the case of an arbitrary superpotential

W (Φ, S), which can include higher dimensional operators, but no higher derivative terms.13

One can also have additional superfields, generically denoted here S, with standard kinetic

terms.14 Consider

L =

∫

d4θ
[

Φ†
(

1 + ξ�

)

Φ + S†S
]

+

{
∫

d2θ W (Φ, S) + h.c.

}

(3.40)

Following steps similar to those in the previous section, L is shown to be equivalent to

L′ =

∫

d4θ
[

Φ̃†
1Φ̃1 − Φ̃†

2Φ̃2 − Φ̃†
3Φ̃3 + S†S

]

+

{
∫

d2θ

[

1

2
µ̃kp Φ̃k Φ̃p +W [Φ(Φ̃1,2,3), S]

]

+ h.c.

}

, (3.41)

with the following relations:

Φ(Φ̃1,2,3) =
1

η1/4

[

(Φ̃2 − Φ̃1)
]

, ΦD =
4

m
√
ξ

Φ̃3 (3.42)

Notice that S is spectator under going from the fourth order to second order theory, since

it has no higher derivative kinetic terms and does not mix with the kinetic terms of Φ.

One also finds that µ̃ij = 0 for all i, j except:

µ̃13 = µ̃31 =
1 −√

η

2 η1/4
√
ξ
, µ̃23 = µ̃32 = − 1 +

√
η

2 η1/4
√
ξ

(3.43)

13This case is discussed in section 4.
14If S itself has higher derivative kinetic terms one introduces extra constraint superfields see previous

section.

– 13 –



J
H
E
P
0
3
(
2
0
0
8
)
0
4
5

where as usual η = 1 + 4ξ m2. These values are equal to m̃13, m̃23 of (3.23) and are

generated by the constraint (3.6) alone, and not by bilinears that may be present in W .

Also µ̃13 = µ̃31 ≈ 0, µ̃23 = µ̃32 ≈ −1/
√
ξ for ξ m2 ≪ 1. The auxiliary fields are

F̃ ∗
1 = −µ̃31 φ̃3 + η−1/4 W ′

φ

−F ∗
2 = −µ̃32 φ̃3 − η−1/4 W ′

φ

−F ∗
3 = −µ̃k3 φ̃k, F ∗

S = −W ′
φs

(3.44)

Here W ′
φ ≡ ∂W (φ, φS)/∂φ, with φ replaced by φ = φ(φ̃1,2) of (3.42). The scalar potential

becomes

V =
∣

∣

∣
µ̃31 φ̃3 − η−1/4W ′

φ

∣

∣

∣

2
−

∣

∣

∣
µ̃32 φ̃3 + η−1/4W ′

φ

∣

∣

∣

2
−

∣

∣

∣
µ̃k3 φ̃k

∣

∣

∣

2
+

∣

∣

∣
W ′

φs

∣

∣

∣

2
(3.45)

In the original Φ-dependent formulation, the potential which was function of F, φ, Fs, φs,

evaluated at an extremum point(s) labelled by “o”, was

Vo =
[

∣

∣W ′
φ

∣

∣

2
+

∣

∣W ′
φs

∣

∣

2
]

o
(3.46)

Let us assume that supersymmetry is unbroken. In the original-field language this means

that W ′
φ = W ′

φs
= 0 and also F = Fs = 0 at this extremum point. This is true regardless

of the dynamical nature of F . Let us now investigate the corresponding situation in the

second order theory. The extremum conditions for (3.45), ∂V /∂φ̃p = 0, p = 1, 2, 3 give, at

the extremum point considered:

〈φ̃3〉 = 0, 〈µ̃3k φ̃k〉 = 0, k = 1, 2. (3.47)

From (3.44), at the extremum point of the scalar potential we find F̃i = Fs = 0, i =

1, 2, 3. The vanishing of the auxiliary fields of the second order theory confirms, in the

new formalism, that supersymmetry is unbroken in this state, as the equivalence of the

two formulations of the theory would suggest.

4. Effects of higher derivatives in the superpotential

The method developed so far can be applied when higher derivative terms are present in

the superpotential. Consider the Lagrangian

L =

∫

d4θ Φ†Φ +

{
∫

d2θ

[

s2
√

ξ Φ � Φ +
m

2
Φ2 +

λ

3
Φ3

]

+ h.c.

}

=

∫

d4θ
[

Φ†Φ +
s2

√
ξ

4

(

ΦD2 Φ + Φ†D
2
Φ†

)]

+

{
∫

d2θ
[m

2
Φ2 +

λ

3
Φ3

]

+ h.c.

}

(4.1)

where15 we allow s2 = ±1. We follow the steps of the previous section, introduce (3.4),

a Lagrange multiplier chiral superfield and ∆L, eqs. (3.5), (3.6). The counterpart to

eqs. (3.11) has now the roots

ν1,2 =
1

2

[

1 ±√
η′

]

, ν3 = 0, where η′ ≡ 1 + 4m2 ξ (1 + s22/16) (4.2)

15We used
R

d4xd2θ D
2

Q(x, θ, θ̄) = −4
R

d4xd4θ Q(x, θ, θ̄).
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with the choice ν1 > 0. Unlike in eq. (3.13), there is a vanishing eigenvalue, so there is

one ghost superfield and one particle-like superfield. After appropriate normalisation of

the Kahler terms, the Lagrangian equivalent to that in (4.1) is:

L′ =

∫

d4θ

[

Φ̃†
1Φ̃1 − Φ̃†

2Φ̃2

]

+

{
∫

d2θ

[

1

2
m̃kp Φ̃k Φ̃p +

1

3
λ̃kpl Φ̃k Φ̃p Φ̃l

]

+ h.c.

}

, (4.3)

where

m̃kp =
mkp

√

|νqk3

k ν
qp3

p |
, λ̃kpl =

λkpl
√

|νqk3

k ν
qp3

p νql3

l |
, k, p, l = 1, 2, 3. (4.4)

with qk3 = 1 − δk3, and m̃kp, λ̃kpl are given in (3.15) with vij presented in the appendix,

eq. (A.4). As before λ̃ij3 = 0 i, j = 1, 2, 3. Φ̃3 can be eliminated using the equations of

motion:

m̃k3 Φ̃k = 0, Φ̃3 = − 1

m̃33

(

m̃13 Φ̃1 + m̃23 Φ̃2

)

(4.5)

Unlike in section 3, here Φ̃3 can be eliminated, and this is ultimately due to the fact that

in (4.1) F is not dynamical and can be integrated out. As a result L′ can be re-written

L′ =

∫

d4θ

[

Φ̃†
1Φ̃1 − Φ̃†

2Φ̃2

]

+

{
∫

d2θ

[

1

2

(

d1Φ̃
2
1+d2Φ̃

2
2+2d3Φ̃1Φ̃2

)

+
µ̃

2

(

Φ̃1 − Φ̃2

)2
+
λ̃111

3

(

Φ̃1−Φ̃2

)3
]

+ h.c.

}

(4.6)

where

µ̃ =
m√
η′
, λ̃111 = − λ

η′ 3/4
, (4.7)

and

d1 =
(
√
η′ − 1)2

8 s2
√
η′ ξ

, d2 =
(
√
η′ + 1)2

8 s2
√
η′ ξ

, d3 =
η′ − 1

8 s2
√
η′ ξ

(4.8)

with d1 = O(ξ3/2m4) and d3 = O(
√
ξ m2) vanishing in the limit of small ξ m2; finally

d2 = O(1/
√
ξ) gives the leading contribution to the mass of the ghost superfield16 Φ̃2.

One also finds the relation between old and new fields:

Φ =
1

η′ 1/4

[

Φ̃2 − Φ̃1

]

, ΦD =
1

η′1/4
√
ξ s2

[

(1 −
√

η′ ) Φ̃1 − (1 +
√

η′ ) Φ̃2

]

(4.9)

with ΦD introduced in (3.4). Eqs. (4.7), (4.8) show again that the couplings of the second

order theory acquired a scale (ξ) dependence, via fields rescaling, first eq in (4.9).

16The whole field-dependent term involving coefficients d1,2,3 equals to (s2/16)
√
ξΦ2

D with ΦD

of (4.9), (3.4).
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The scalar potential is

V = |F̃1|2 − |F̃2|2

=
∣

∣ µ̃ (φ̃1 − φ̃2) + λ̃111 (φ̃1 − φ̃2)
2 + d1 φ̃1 + d3 φ̃2

∣

∣

2

−
∣

∣ µ̃ (φ̃1 − φ̃2) + λ̃111 (φ̃1 − φ̃2)
2 − d3 φ̃1 − d2 φ̃2

∣

∣

2
(4.10)

In the basis of the second order theory, the potential is not positive definite anymore,

similarly to the previous section. There are two ground states, for

i) 〈φ̃1〉 = 〈φ̃2〉 = 0

ii) 〈φ̃1〉 =
m (1 +

√
η′)

2 η′ 1/4 λ
, 〈φ̃2〉 =

m (1 −√
η′)

2 η′ 1/4 λ
(4.11)

which are similar to their counterparts in (3.30), (3.34). The vev’s above give that (〈φ̃2〉−
〈φ̃1〉)/η′1/4 equals 0 for i), and −m/λ for ii). This result for the two ground states is

in agreement with what one obtains in the Wess-Zumino model in the absence of higher

derivative operators, using the first relation in (4.9), for the corresponding ground states

〈φ〉 = 0 and −m/λ, see section 3.1. In the limit of decoupling the higher dimensional

operator ξ → 0 then η′ → 1, 〈φ̃2〉 = 0 and −〈φ̃1〉 → 〈φ〉. The ghost (super)field decouples

and one recovers the Wess-Zumino model without higher derivatives. For both i) and ii)

cases:

〈F̃1〉 = 〈F̃2〉 = 0, V∗ = 0 (4.12)

i.e. supersymmetry is unbroken, in agreement with the picture in the original basis for the

corresponding ground states. One then computes the spectrum for i), ii), in basis φ̃1,2 with

a metric which takes account of the negative sign of the kinetic term of Φ̃2, similar to the

previous section. The solutions are (with fixed s2 = ±1):

m2
˜̃
φ1,2

=
1

8 ξ

[

1 ∓
√

1 + 8ms2
√

ξ + 4ms2
√

ξ
]

. (4.13)

These values agree with those obtained from the poles of scalar propagators found using the

old basis (φ, F ) after performing the Grassmann integrals in first line of (4.1). The above

values are of order m2 +O(m3
√
ξ) for

˜̃
φ1 and 1/(4ξ) +O(m/

√
ξ) for the ghost (

˜̃
φ2). Note

that the correction to the mass of ˜̃φ1 is suppressed only by 1/M∗ and is thus larger than

the one discussed in the case of Kahler higher derivative terms, eq. (3.33) suppressed by

ξ = 1/M2
∗ . The effects of the operator Φ�Φ for phenomenology are discussed in section 6.

4.1 The case of a general superpotential

The previous analysis is easily extended to an arbitrary superpotential in addition to the

higher dimensional (derivative) term. Consider the Lagrangian

L =

∫

d4θ
[

Φ†Φ + S† S
]

+

{
∫

d2θ
[

s2
√

ξ Φ � Φ +W (Φ, S)
]

+ h.c.

}

(4.14)
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Here W (Φ, S) has no derivative terms in any of the fields, but otherwise is arbitrary,17 and

can include non-renormalisable interactions. S is an arbitrary superfield. One shows that

the Lagrangian equivalent to L is:

L′ =

∫

d4θ
[

Φ̃†
1Φ̃1 − Φ̃†

2Φ̃2 + S† S
]

+

{
∫

d2θ

[

1

2

(

d1 Φ̃2
1 + d2 Φ̃2

2 + 2 d3 Φ̃1Φ̃2

)

+W (Φ(Φ̃1,2), S)

]

+ h.c.

}

(4.15)

The coefficients d1,2,3 are given in eqs. (4.8) and the relation between old and new fields is

that of (4.9) which applies in this case too. Finally, S is spectator under the unfolding of

the fourth order theory into the second order one. The auxiliary fields are

−F̃ ∗
1 = d1 φ̃1 + d3 φ̃2 − η′−1/4W ′

φ

F̃ ∗
2 = d2 φ̃2 + d3 φ̃1 + η′−1/4W ′

φ, −F ∗
s = W ′

φs
(4.16)

where W ′
φ (W ′

φs
) is the partial derivative wrt φ (φs). Then the scalar potential is equal

to V = | F̃1 |2 − | F̃2 |2 + | F̃s |2. Assume now that our model is in a ground state having

(in the old basis) F = Fs = 0 at the extremum point of the potential i.e. supersymmetry

is unbroken. To picture this in the new formalism, use eq. (4.9) giving F̃1 = F̃2. Further,

the extremum conditions of the scalar potential wrt the new basis give three eqs which

depend on W ′
φ and W ′

φs
and on the second derivatives of the superpotential wrt φ, φs,

evaluated at the extremum point considered. One also uses that W ′
φ = 0 and W ′

φs
= 0 at

the extremum point, while the second derivatives can be non-zero for this state. With these

observations, one immediately finds that F̃1 = F̃2 = 0 which recovers, in the new field basis

that supersymmetry is unbroken, as expected by the equivalence of the two formulations.

The analysis can in principle be extended to the case when higher derivative terms

of type discussed in sections 3.2, 4 are simultaneously present in the Kahler term and the

superpotential, for an otherwise arbitrary superpotential. The method can also be applied

to terms such as Φn
� Φ in the superpotential or (Φ†)2 Φ + h.c. etc, in the Kahler part of

the action.

5. Supersymmetry breaking and higher-derivatives

5.1 A model of supersymmetry breaking

A natural question, which was our main motivation in studying theories with higher di-

mensional operators, is whether supersymmetry can be spontaneously broken due to the

higher derivative terms, or equivalently in the two-derivative formulation, if supersymmetry

breaking can be triggered by the presence of the ghost field(s).

The purpose of this section is to show the importance of the relation between the two

formulations of a theory with higher derivatives found in the previous sections, for the case

of supersymmetry breaking. For example one can have models with higher derivative terms

which look rather uninteresting in the original (higher derivative) formulation and could be

17If higher derivative terms in S exist in the superpotential, the same method is also applied for S.
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disregarded when decoupling the higher derivative term, and which in the two-derivative

formulation are actually interacting theories and exhibit (spontaneous) supersymmetry

breaking.

Here we provide an example of a model which in the limit of vanishing higher deriva-

tive operator has a trivial SUSY breaking, in the sense that the theory becomes free with

a positive cosmological constant. However, in the presence of the higher derivative oper-

ator and in the second order formulation, the theory is interacting and has spontaneous

supersymmetry breaking à la O’Raifeartaigh [42]. The example we consider starts from the

two-derivative formulation with one particle (super)fields S and two ghost superfields Φ, χ

L =

∫

d4θ
(

S† S − Φ† Φ − χ†χ
)

+

∫

d2θ
[

S (−λχ2 −m2) −M∗Φχ+ h.c.
]

. (5.1)

The theory breaks SUSY à la O’Raifeartaigh since the SUSY conditions

−F ∗
S = −λφ2

χ −m2 = 0 , −F ∗
φ = M∗ φχ = 0 (5.2)

cannot be simultaneously satisfied. The vacuum of (5.1) is given by

〈φχ〉 = 〈φΦ〉 = 0 , 〈φS〉 = v2 = arbitrary , (5.3)

therefore the scale of SUSY breaking is given by F ∗
S = m2. In the limit of large ghost

mass M∗ ≫ m, we can replace χ by the classical superfield eq.

χ =
1

4M∗
D̄2Φ† . (5.4)

Inserting (5.4) back into the original action (5.1) we find, after some standard manipula-

tions, the Lagrangian18

L =

∫

d4θ

[

S†S + Φ†Φ +
1

M2
∗

Φ†
�Φ +

λ

4M2
∗

(SΦ†D̄2Φ† + h.c.)

]

+

[
∫

d2θ
(

−m2S
)

+ h.c.

]

. (5.5)

Notice that it is safe to replace χ by (5.4) since in the original theory χ did not contribute to

SUSY breaking. Notice also the sign flip in the kinetic term of Φ, which became a standard

kinetic term, supplemented by the two higher derivative operators. Of these operators the

first one was considered already in section 3, whereas the second one is of the form (d) of

eq. (2.1), not considered before.

In the decoupling limit M∗ → ∞ eq. (5.5) describes a free supersymmetric theory for

the two fields S, Φ with a linear superpotential W = −m2 S which breaks supersymmetry

in a trivial way, by adding a pure cosmological constant. Switching on the higher derivative

terms generates an interacting theory whose SUSY breaking can be better described in the

two-derivative version as an O’Raifeartaigh model (5.1). For M2
∗ ≫ m2, both χ and Φ are

in fact very heavy, whereas S remains massless. We could have therefore integrated out Φ

18One can start in (5.1) with +Φ†Φ, then in (5.5) Φ†
�Φ has opposite sign, see also (3.3), (3.13), (3.14).
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instead, in which case however we would turn χ into a particle-like superfield. It would be

more satisfactory to integrate both χ,Φ simultaneously. In this case, however, the theory

for S is non-local and highly non-linear.

Can we use the method developed in the previous sections to go from eq. (5.5) to (5.1)?

The answer is indeed affirmative, despite the presence of the new term proportional to λ in

the Kahler term (not present before). This can be easily checked using eqs. (3.4), (3.41),

(3.42), (3.43), for ξ = 1/M2
∗ . The term in (5.5) proportional to λ can be “moved” into the

superpotential where it acquires an extra D
2

and becomes of type S (D
2
Φ†)2 (using that

S is chiral), and which upon using second eq in (3.4) and (3.42) becomes a non-derivative

interaction term. This interaction term recovers the first term in the superpotential in (5.1).

One then uses that µ̃13 vanishes in the limit ξ → 0 while µ̃23 → −1/
√
ξ. The latter will

in the end recover the last term in the superpotential of (5.1) (see also (3.41)). Finally,

the first three D-terms in (5.5) become, using (3.4), the D-terms of (5.1) after disregarding

the Kahler term of a non-interacting, massless superfield. This concludes our discussion

on how to recover from (5.5), eq. (5.1).

It is important to notice that the formalism of previous sections applies not only in the

presence of Gaussian-like terms (as it would be inferred from the discussion in sections 3, 4)

but also for other terms, like the last D-term in (5.5). Finally, the method can be iterated

for models with an even larger number of derivatives, to map it to a two-derivative theory.

As a result the latter may then acquire higher dimensional superpotential interactions19

but no higher derivatives.

5.2 Soft breaking terms

We return to the models of sections 3, 4 of eqs. (3.3), (4.1) (or more generally eqs. (3.40),

(4.14)20), to comment on supersymmetry breaking. The results below apply to both of

these models as we shall see shortly. Assuming that supersymmetry is broken by explicit

soft terms [46] added to (3.3) and (4.1) respectively, let us investigate their explicit form in

their second order, equivalent formulation. Consider therefore the addition of Lsoft(φ, φ
∗)

to eq. (3.3), (4.1) where

−Lsoft = M2
1 φ

∗ φ+ (M2
2 φ

2 + h.c) (5.6)

Taking into account the relation between φ and φ̃i which is similar for sections 3 and 4,

see (3.42), (4.9), the soft terms become

−Lsoft =
M2

1√
β

∣

∣

∣
φ̃1 − φ̃2

∣

∣

∣

2
+

[

M2
2√
β

(φ̃1 − φ̃2)
2 + c.c.

]

, (5.7)

where β is equal to:

η ≡ 1 + 4 ξ m2 (for section 3.2)

η′ ≡ 1 + (17/4) ξ m2 (for section 4) (5.8)

19for a sufficiently large number of derivatives
20In this case soft terms in S in addition to those below can also be present.
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which are thus of identical form up to a rescaling of ξ. Similar relations apply for trilinear

soft terms. The soft breaking terms also acquired a scale/moduli dependence on 1/ξ =

M2
∗ which is the scale of the higher derivative operators. This dependence is introduced

dynamically by the “constraint” Lagrangian of eq. (3.6).

It is important to mention here that the presence of soft terms does not affect the

holomorphic constraint and that the formalism we developed in previous sections is not

affected. We checked this for specific cases by computing the spectrum after adding the soft

terms, in both formulations (with 4- and 2-derivatives). In the second order formulation

this was done using the eigenvalues of the second derivatives matrix of the potential with

an appropriate metric in the field space, as detailed in previous sections.

5.3 Further remarks on supersymmetry breaking

We end this discussion with more general remarks on models with ghost superfields in the

second order action. In these, the scalar potential is of the generic form

V =
∑

i

|Fi|2 −
∑

j

|Fj |2. (5.9)

were the first sum accounts for contributions from particles and the second for that of the

ghosts superfields present in the model considered. One could in principle have V > 0,

V < 0 or even V = 0 with broken supersymmetry. The breaking can in principle be done

by vev’s of the particle-like Fi 6= 0, by the ghost-like Fj 6= 0’s or by both. For example a

toy model with

L1 =

∫

d4θ
[

Φ†
1 Φ1 − Φ†

2 Φ2

]

+

[
∫

d2θW (Φ1 − Φ2) + h.c.

]

+m2
0 (φ1 − φ2)

2 (5.10)

can have a vanishing scalar potential, with broken supersymmetry. Indeed, the two aux-

iliary fields have identical eqs of motion, and thus V (φ1, φ2) = Vsoft(φ1, φ2) so V has a

minimum at φ1−φ2 = 0. Assuming W ′(φ1 −φ2) 6= 0 which is easily satisfied if W contains

a linear term such as g(φ1 − φ2), then supersymmetry is broken, F1 = F2 = g 6= 0 yet the

value of the scalar potential at the ground state is still vanishing. This remark has some

similarities to [27] and may be of some interest for the cosmological constant problem [43].

At this point one could raise the issue of the stability [39, 41] of the models with higher

derivative terms after supersymmetry breaking. Some stability issues were discussed in [41],

where it was shown that the transition probabilities in such models have no exponential

growth and in the decoupling limit (M∗ → ∞) tend to those in ordinary second order

theories. The price paid for stability is breaking unitarity at the scale M∗ which is assumed

to be very high relative to all other scales in the theory.

In the supersymmetric context of our models, further analysis of the stability is neces-

sary, along the lines discussed more recently in [39], where the possibility of the formation

of a ghost condensate was analysed in similar models. Additional constraints [39] were also

derived from imposing that the S-matrix respected all the standard axioms. Our purpose

was to illustrate the method of “unfolding” the theory with higher dimensional operators

(obtained for example after integrating out massive states) into a second order theory; this
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method is general and can be applied to models which eventually meet all the constraints

discussed in [39]. We believe that our second-order formalism is very useful for a detailed

analysis of stability, since it gives an off-shell description of the dynamics of the system,

whereas in the original four-order theory supersymmetry is realized on-shell, since auxiliary

fields did acquire their own dynamics.

5.4 Renormalisability issues

Using our formalism we showed that a theory with higher derivative operators of type

considered in the previous sections, is equivalent to a theory without such operators but

with additional superfields and renormalised couplings. Such equivalence remained true in

the presence of soft breaking terms. If the initial theory had no other additional higher

dimensional (non-derivative) operators, the equivalent second order formulation has only

dimension 4 operators. Such theory can therefore be renormalisable. This is possible pro-

vided that we specify the analytical continuation of such theory to Euclidean metric. This

is relevant since in models with ghosts the sign of the iǫ prescription in their propagators is

very important for the UV behaviour of a softly broken theory and in some cases can dra-

matically alter it, see discussion in [28] (despite a soft breaking and contrary to what one

would expect on naive dimensional grounds21). However, if the propagators prescription

for the ghost and particle-like degrees of freedom are similar (i.e they both undergo Wick

rotations in same sense), then the Minkowski and Euclidean descriptions of the theory have

similar UV behaviour. In this case, the 2-derivative formulation of the theory, which has

only D=4 operators and is softly broken, could actually be renormalisable.22

6. Applications: MSSM with higher-derivative operators

As an application to the possible low-energy effect of higher-derivative operators, we con-

sider the Minimal Supersymmetric Standard Model (MSSM) and the corrections to the

Higgs mass coming from such operators. We denote by H1,H2 the two MSSM Higgs dou-

blets. The relevant Lagrangian to consider is that of the MSSM supplemented by derivative

operators built out of the Higgs superfields. The lowest dimensional ones are:23

L = LMSSM +

∫

d4θ
[

ξ1H
†
1�H1 + ξ2H

†
2�H2

]

−
[
∫

d2θ
√

ξ3H1�H2 + h.c.

]

, (6.1)

where LMSSM is the standard MSSM Lagrangian, including the soft-breaking terms. Notice

first of all that the higher derivative terms do not change the vacuum structure of the theory.

They change however the tree-level Higgs physical spectrum. Indeed, by expanding the

Lagrangian (6.1) around the vacuum breaking the electroweak symmetry and restricting

21In the presence of higher derivative terms power counting for UV divergence of loop integrals does not

always work in Minkowski space, for details see [28].
22It would be useful to derive such prescriptions from the original theory with higher derivative operators

using a path integral formulation in the Minkowski space-time. No such formulation is available at present.
23The effects of gauge interactions are not included in this section.
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for simplicity to the case ξ3 = 0, we find the Lagrangian relevant for the scalar sector 24

L(2) = −h†
ī

[

ξi �
2 + �

]

hi + ξi F
∗
i �Fi − V, i = 1, 2 (6.2)

where V is that of the MSSM before eliminating the auxiliary F1,2 of H1,2. One computes

the corrected values of m2
h, m2

H of the neutral scalar eigenstates, using the poles of the

corresponding propagators (vanishing of the appropriate determinant in the basis of Higgs

and auxiliary fields). Assuming for simplicity that ξ1 = ξ2 = ξ, then one finds

2 ξ p4 − p2 [1 + (m2
h − µ2) ξ] +m2

h = 0 , 2 ξ p4 − p2 [1 + (m2
H − µ2) ξ] +m2

H = 0 ,(6.3)

where mh and mH are the masses computed in MSSM. Setting p2 equal to the corrected

corresponding Higgs mass, we find the leading corrections to the neutral Higgs masses to be

δm2
h

m2
h

≈ ξ (m2
h + µ2) ,

δm2
H

m2
H

≈ ξ (m2
H + µ2) . (6.4)

For a cutoff M∗ (ξ1,2 = 1/M2
∗ ) in the 5-10 TeV range, these effects are of order 1− 2% and

therefore too small to give a sizable contribution.

Let us now examine the effects of the operator W1 =
√
ξ3H1�H2 in the superpotential,

where
√
ξ3 = 1/M2

∗ and set ξ1 = ξ2 = 0. It turns out that these can be substantial,

since W1 is of dimension 4 and therefore of the same order as the non-derivative operator

W ′ = (H1H2)
2/M∗ considered in [48, 49]. To investigate these effects, first notice that

despite the presence of the derivative in the superpotential, the auxiliary fields of H1,H2

are not dynamical and can be eliminated by their eqs of motion. After doing so, one finds

a Lagrangian for the scalar components

L = −h†i (� + ξ3�
2 − 2µ

√

ξ3 �)hi − V, i = 1, 2 (6.5)

where V is that of the MSSM. Finding the extrema of the potential, going to the mass

eigenstates (h,H) etc, proceeds as in the MSSM, while the kinetic terms are invariant

under these transformations. One then finds the poles of the propagators above from

−p2 + ξ3p
4 + 2µ

√

ξ3 p
2 +m2

h = 0, (6.6)

where mh is the value computed in the MSSM. With p2 = m2
h + δm2

h, the effect of W1 on

the lightest Higgs mass is found to be

δm2
h

m2
h

≈ 2µ
√

ξ3 =
2µ

M∗

. (6.7)

This correction is of order 10% for M∗ ∼ 10 TeV and µ ∼ 500 GeV and can therefore

increase the Higgs mass above the experimental limit even before adding the quantum

corrections ! Such a correction is comparable to the one found in [48, 49] using the operator

(H1H2)
2/M∗. For a further discussion of these corrections see also [44].

24Here hi are the scalar Higgs components of the superfields.
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7. Conclusions

Higher dimensional operators (derivative or otherwise) are a common presence in 4D ef-

fective, nonrenormalisable theories. They are easily generated in the low-energy effective

action from 4D renormalisable theories upon integration out massive (super)fields. Such

operators are also dynamically generated by radiative corrections in effective theories of

compactification even for the simplest orbifolds.

Motivated by this, we investigated in detail the case of 4D N=1 supersymmetric mod-

els with such operators. Using a superfield language it was shown that a 4D N=1 super-

symmetric theory with higher derivative terms in the Kahler potential and an arbitrary

superpotential is equivalent to a 4D N=1 theory of second order with two additional super-

fields and renormalised interactions. Because in the initial, higher derivative formulation

of the theory both �φ and the auxiliary field F where propagating, by supersymmetry this

lead in the two-derivative formulation of the theory to the existence of the two additional

superfields mentioned above.

The method developed was then extended to the case of 4D N=1 models with higher

derivative terms in the superpotential whose remaining part is otherwise arbitrary. It

was again showed that such model is equivalent to a 4D N=1 second order theory with

an additional (ghost) superfield and renormalised couplings. Unlike the case of higher

derivatives in the Kahler potential, in this case there is only one additional superfield in

the second-order formulation because in this case only �φ is propagating in the higher

derivative theory, and this implied, by supersymmetry, the existence of one additional

(ghost) superfield (indeed, we found that Φ̃3 was acting only as a constraint superfield in

section 4, whereas it was a propagating degree of freedom in section 3). Finally, it was

verified in both cases that in the second order formulations of the theory the spectrum

must be computed with an appropriate metric in field space to account for the negative

kinetic terms of the ghosts fields.

In both cases the couplings of the new, second order theory, acquire already at the tree

level a dependence on the scale of the higher dimensional operator. The new, second order

formulation of the theory has the advantage of providing a standard, familiar framework for

investigating the role of these operators in explicit models. We argued that if there are no

additional operators of D > 4 in the original theory apart from the higher derivative ones

considered, the second order formulation of the theory has only D=4 operators. This theory

can be renormalisable, under some assumptions for the analytical continuation from the

Minkowski to Euclidean metric. This requires that the ghost propagators be Wick rotated

to Euclidean space in the same sense as the particle-like ones, leading to similar UV for

both Minkowski and Euclidean descriptions.

In the new basis of the second order theory, the original superfield is a mixing of

particle and ghost-like superfields, and thus the particle-like degrees of freedom are not

identical in the two descriptions. This brings an intriguing issue, regarding which of the two

descriptions is more fundamental. Ultimately this refers to which choice of the degrees of

freedom one should make for the particle-like field: original field of the fourth order theory

or the particle-like degree of freedom in the second order theory. This issue is relevant

– 23 –



J
H
E
P
0
3
(
2
0
0
8
)
0
4
5

particularly at the loop level, when superfields re-scaling anomalies associated with the

transformations we performed, can bring in quantum corrections to the equivalence of the

two formulations.

Our analysis remains valid in the presence of supersymmetry breaking terms, as it

was confirmed by computing the spectrum in both formulations of the theory with higher

derivative operators, for explicit forms of soft breaking terms. The higher derivative oper-

ators are also important for supersymmetry breaking. We showed that models with higher

derivative terms which look rather un-interesting in the original formulation and could be

disregarded when decoupling these terms, turn out to be in the two-derivative formulation,

interacting theories that exhibit spontaneous supersymmetry breaking à la O’Raifeartaigh.

The analysis can be applied in the presence of arbitrary higher derivative terms, using

eventually an iteration of the method presented in sections 3 and 4. Higher dimensional

Kahler terms other that those leading to standard kinetic terms in the two-derivative

formulation, can be “moved” into the superpotential with an additional (super)derivative

and become, in the new field basis, higher dimensional non-derivative interactions. An

example of this type was discussed in the second part of section 5.1. Similar techniques

can be applied in the case of complicated derivative interactions in the superpotential,

by replacing derivatives of superfields with new superfields and appropriate holomorphic

constraints in the Lagrangian. Finally, in specific cases and for appropriate parameters

in the original theory, some of the Kahler terms of ghost superfields that can emerge in

the two-derivative formulation may in some cases decouple from the Lagrangian, if these

fields do not have superpotential terms. To conclude, our method shows that theories

with higher derivative operators can be mapped to theories with higher dimensional, non-

derivative operators.

An application to the case of higher derivative terms in the MSSM Lagrangian was also

presented. It was estimated that the Higgs mass can be lifted above the experimental limit

by such terms, even before adding quantum corrections associated with them. Regardless

of the exact nature of the ghost fields that higher derivative operators bring in (i.e. whether

these fields exist as asymptotic states or only loop ones), the method we presented can be

used as a perturbative tool to investigate the effects on low energy physics of new high-scale

physics associated with higher derivative operators, much in the same way this is done for

higher dimensional operators.

In general the presence of ghost superfields in a 4D N=1 action has as effect that the

scalar potential of such theory is not positive definite. Therefore, the vanishing of V is

not equivalent to exact supersymmetry anymore and one can have V > 0, V < 0 and even

V = 0 for broken supersymmetry. In the last case |F̃i| = |F̃j | 6= 0 where i and j label the

contributions of particle and ghost-like states to V . A vanishing scalar potential would

require the breaking of supersymmetry be done by both the ghost and particle-like degrees

of freedom. This last case could be of some interest for the cosmological constant problem.

We would like to end our discussion of the equivalence on the two formulations of the

theory with higher dimensional operators with the following observation. The equivalence

we showed between the fourth order and second order formulation is valid at the classical

level. A legitimate question is then whether one can make similar claims of equivalence
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at the quantum level. Although the question is beyond the purpose of this paper, let us

make the following remark. The study of the quantum equivalence is somewhat beyond

the possibility of an effective field theory framework, where the absence of a detailed

UV completion would render such analysis incomplete or valid in very specific cases only.

Nevertheless, restricting ourselves to the lagrangian with one higher derivative operator,

we performed an explicit check of the equivalence at the one-loop level, for the radiative

correction to the mass of the original scalar field φ, after a soft breaking of supersymmetry.

Using (3.3) and its second order formulation (3.41) with (3.42), (3.43), we checked explicitly

that one obtains the same one-loop result. This is interesting in itself and checks the

validity of our formalism at the quantum level too, for this particular case. However,

given the effective character of these theories and the absence of a UV completion, one

should be careful not to extrapolate this finding to a general, similar statement of quantum

equivalence of the two formulations.

Acknowledgments

This work was partially supported by INTAS grant, 03-51-6346, RTN contracts MRTN-

CT-2004-005104 and MRTN-CT-2004-503369, CNRS PICS # 2530, 3059 and 3747, and

by a European Union Excellence Grant, MEXT-CT-2003-509661. D.G. acknowledges the

partial support of the Marie Curie Research Training Network of the European Community,

contract n. MRTN-CT-2006-035863 and that of a CERN visiting fellowship.

A. Eigenvalues and eigenvectors used in sections 3,4

In the case of higher derivatives of section 3 the eigenvalues were

ν1 =
1

2
(1 +

√
η), ν2 =

1

2
(1 −√

η), ν3 = −ξ m
2

16
, (η ≡ 1 + 4 ξ m2) (A.1)

The corresponding eigenvectors vij with Φ′
i = vij Φj (see section 3.2) are respectively

v1j =
1

||v1||
{

− ei h1
ν1

m
√
ξ

cos θ,−e−i (h−h1) ν1

m
√
ξ

sin θ, 1
}

j

v2j =
1

||v2||
{

− ei h1
ν2

m
√
ξ

cos θ,−e−i (h−h1) ν2

m
√
ξ

sin θ, 1
}

j

v3j =
1

||v3||
{

− ei h tan θ, 1, 0
}

j
, j = 1, 2, 3. (A.2)

with ||vi||, i = 1, 2, 3, the norm of the corresponding vector.

In the case of higher derivatives of section 4 the eigenvalues were

ν1 =
1

2
(1 +

√

η′), ν2 =
1

2
(1 −

√

η′), ν3 = 0, η′ ≡ 1 + 4 ξ m2(1 + s22/16) (A.3)
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The corresponding eigenvectors used there were

v1j =
1

||v1||

{−ν1 e
i h1

m
√
ξ

cos θ +
e−i (h1−h) s2

4
sin θ,

−s2 e−i h1

4
cos θ − ν1 e

−i (h−h1)

m
√
ξ

sin θ, 1

}

j

v2j =
1

||v2||

{−ν2 e
i h1

m
√
ξ

cos θ +
s2 e

−i (h1−h)

4
sin θ,

−s2 e−i h1

4
cos θ − ν2 e

−i (h−h1)

m
√
ξ

sin θ, 1

}

j

v3j =
1

||v3||

{−4

s2
ei (h−h1) sin θ,

4

s2
e−i h1 cos θ, 1

}

j

(A.4)
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